Best Possible Inequalities between Generalized Logarithmic Mean and Classical Means

نویسندگان

  • Yu-Ming Chu
  • Bo-Yong Long
  • Lance Littlejohn
چکیده

and Applied Analysis 3 Theorem B. For all positive real numbers a and b with a/ b, we have √ G a, b A a, b < √ L a, b I a, b

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal inequalities for the power, harmonic and logarithmic means

For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

On Weighted Generalized Logarithmic Means

An integral representation of Neuman is extended and used to suggest a multidimensional weighted generalized logarithmic mean. Some inequalities are established for such means. A number of known results appear as special cases.

متن کامل

Generalization of Stolarsky Type Means

provided that f : a, b → is a convex function 1, page 137 , 2, page 1 . This result for convex functions plays an important role in nonlinear analysis. These classical inequalities have been improved and generalized in a number of ways and applied for special means including Stolarsky type, logarithmic, and p-logarithmic means. A generalization of H.H inequalities was obtained in 3–5 , 2, page ...

متن کامل

Seven Means, Generalized Triangular Discrimination, and Generating Divergence Measures

Jensen-Shannon, J-divergence and Arithmetic-Geometric mean divergences are three classical divergence measures known in the information theory and statistics literature. These three divergence measures bear interesting inequality among the three non-logarithmic measures known as triangular discrimination, Hellingar’s divergence and symmetric chi-square divergence. However, in 2003, Eve studied ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010